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CONVERS ION FACTORS FOR U.S. CUSTOMARY 2

TO METRIC (SI) UNITS OF MEASUREMENT1,Lp .tN4

MULTIPLY rBY rTO GET
TO GET 4BY4 DIVIDE

angstrom 1. 000 000 XE 910 motors (m)

atmosphere (normal) 1 013 25 XE K 2 kilo pascal lkPa) . '

bar 1 000 000 X E.2 kilo pascall(kPa)

barn 1 000O000X E -28 meter
2 

(in
2
)

British thermal unit (thermochemical) 1. 054 350 X E .3 jol WJ -. C

calorie iiemcerMD4 184 000 Jol WJ
2a temceialc 4. 184 000 X E -2 mega joute/m 2 MJ/m 

2

curio 3 700 00d) XE .1 -gg becquerel (GSqI

degree tangle) 1 745 329 X £E -2 radian find)

degree Fahrenheit W =tf . 459.670/.a8 degre liavisn 410.

electron volt 1 602 19 X E -19 Joule W
eg1. 000 000 X E -7 joule (J)

e/second 1.00000X E -7 watt (W)

fot3.048 000 XE -1 meter (m)

foot -pound -to rce 1.355 818 joule WJx

gallon (U S. liquid) 3 785 412 X E -3 meter 
3 

(in
3
)

inch 2.5$40 000 X E -2 meter (ml)

jerk 1 000 000 X E .9 joule WJ

Joule/kilogramn (JAW) (radiation dose
absorbed) 1.000 000 Gray (Gy)

kilotons 4. 183 terajoulea

kip (1000 lbf) 4. 448 222 X E .3 newton (N4)

kip/inch
2 

(koil 6 894 757 X E .3 kilo pascal (kWal

ktap newton-siland/n C

1.000 000 X E .2 1-/n

micron 1 000 000X E -4 meter (m)

nil 2. 540000 XE -5 metor (ml)

mile finternationall 1. 609 344 X E .3 meter (ml C

ounce 2A834 952 X E -2 kilogram (15g)
pound-force Ilbs avoirdupois) 4.448 222 newton (N)

pound -force inch L 129 1348 X E -1 newton -mete r (N -mi

pound -force /inch 1 751 268 X E .2 newton/meter iN/mI

pound-force/loot 
2  

4. 7 88 026 X E -2 kilo pascal (kPal
2

pound -force /inch (pail 6. 894 757 kilo pascal (kPa)

pound-masa (Ibim avoirdupois) 4. 535 924 X E -1 kilogram (151g.

pound-mnass-foot 
2 

(mioment of inertial kilogram -meter
2  

1
4 214 011 X E -2 15-rn

2
)

pound -mass/foot 
3  kilogram/meter 

3

1 601 446 X E .1 (15/n
3
)

rad (radiation dose absorbed) 1. 000 000 X E -2 -- Gray (Gy?

roentgen coulorhb Aulogram
2..5797'60 XE -4 iclig)

shake 1 000 000 X E -4 second (a)
slug 1. 459 390 X E .1 kilogram (151

torr tmm Hg, 0' C) 1. 333 22 XE -1 kilo pascal lkPa)

-The beciuerel )Bq) is the 5I unit of radioactivity; 1 Bqit I event/s.
-The Gray (Gyl is the St unit of absorbed radiation.
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SECTION 1

INTRODUCTION

, 1-1 SCOPE AND BACKGROUND.

This report documents the results of an investigation

conducted with the objectives of (1) developing an improved

- analytical model for calculating closure and failure resistance

- of deep-based tunnels and (2) relating the improved models to

*results of laboratory studies.

This study is a continuation of "An Investigation of

- the Failure Resistance of Rockbolted Tunnels for Deep Missile 4.

Basing" (AA, 1983). That report described an improved design

methodology for minimally hardened tunnels that relies on

elastoplastic models of a cylindrical tunnel in an infinite

homogeneous rock mass. In these models, the strength of rock is

simply defined in terms of a friction angle and a cohesion, and

the volumetric expansion of rock during failure in terms of a

dilatancy angle (the dilatancy angle controls the rate of

increase of the inelastic volume change of the material with the

plastic shear strain). With respect to previous methodologies

(see Reed et al., 1983, for a state-of-the-art review), three

.. significant improvements were achieved in the course of that

investigation:

- Consideration of an arbitrary dilatancy angle

with values anywhere between zero (no inelastic

dilatation) and the value of the friction angle

(the maximum theoretical limit), thus providing a

generalization of the models of Newmark (1970)

and Hendron and Aiyer (1971) for hydrostatic

far-field stress loading.

* Consideration of a deviatoric component in the

far-field stress (previous analytical models were

restricted to consideration of a hydrostatic

far-field loading), with the consequence that the

model can predict ovalling of the tunnel during " *"'"

closure.

*. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .

".".-.. ..... ". ... -"..'.....-.,,......'..-,.. ... S .. ....- .* *- ... . . ...
".'-:;".,,."-".-.'".-. L .".- - * . "- .'' ...- ' ..-...- ." -. . . . ."., ,',', 5 ,- .'..-' ",','''..'- . ",?'-".°" ", -- '



0 Development of design charts based on the semi- 
. -

analytical nonhydrostatic model. These charts

constitute a powerful and quick means of calcu-

lating the support pressure to be provided by a

support system, to limit closure to within a

preset amount.

That investigation concluded that prediction of tunnel .1-1

closure (and thus of the support pressure) is very sensitive to
the assumed (constant) value of the dilatancy angle, and that

the dilatation model of rock based on a constant value of the

dilatancy angle is inadequate for this class of problems. In

practice, the rate of increase of the plastic volume change with

the plastic shear strain has not been observed to be constant in

rocks; it changes with the. amount of plastic deformation

approaching zero as the "damage" increases. In contrast, the

theoretical models based on the assumption of a constant dila-

tancy angle predict that there is no upper limit on the maximum

inelastic volume increase that the material can experience. The

inadequacy of the assumption of a constant dilatancy angle is

particularly severe in the tunnel problem, which is charac-

terized by a high distortional strain field in the rock mass.

The principal objective of the present investigation

was then to develop an elastoplastic model of a tunnel under

either hydrostatic or nonhydrostatic loading, using a more

realistic dilatation model for the rock. The improved dilata-

tion model considered in this report assumes an exponential

decay of the dilatancy angle, from an initial value equal to the

friction angle. It is a simple law that has the advantage of

depending on only one physically meaningful parameter; the
maximum plastic volume change that the material can experience.

Secondary objectives of this investigation consisted of a review -<

*. of the rock dilatation phenomenon and an analysis of physical

model experiments, with the purpose of validating the improved

dilatation model. ... "

'S/°
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1-2 REPORT ORGANIZATION.

The main body of this report is comprised of three
major sections covering respectively (1) the phenomenon of rock
dilatancy, (2) a general description of the elastoplastic models
of a tunnel under hydrostatic and nonhydrostatic loading, and
(3) an analysis of physical model tests. Mathematical deriva-
tion and description of numerical procedures have been docu-
mented in three Appendices.

3.1.

.............
'o 

.. 
..

- - -~• -.--*..



SECTION 2

DILATANCY OF ROCKS "___-_

2-1 CAUSES OF DILATANCY.

The phenomenon of volumetric expansion, or dilatancy,

has long been observed during shear deformation of densely

packed granular media, where it is associated with relative "''
movement of grains and is a geometrical necessity for deforma-

"-* tion to occur. Dilatant behavior of rocks during failure was - --

" observed first by Bridgman (1949) during compression tests on

soapstone and calcite marble. Dilatancy during uniaxial and

.- triaxial compression tests was subsequently confirmed for a

large variety of rocks: norite and uartzite (Bieniawski,

1967), granite (Brace et al., 1966; Zoback and Byerlee, 1975), .--

marble, sandstone, limestone, etc. Dilatancy therefore appears

to be a pervasive property of many rocks.

A typical result of a triaxial compression test on a

dense brittle rock is shown in figure la. In the early stage of -

the test, the volumetric change is negative (i.e., volume ,.

decrease); which is mainly attributable to the elastic behavior

of the rock but also reflects the closing of some open cracks.

At about 50 percent of the peak stress the curve of the volu- ,-.

metric strain versus axial stress starts to deviate from

linearity; the deviation becoming progressively greater with

increasing stress. Eventually, at fracture, the volumetric -.

curve shows a net volume increase with respect to the original -

unstressed configuration. In figure lb, the data have been pre-

sented differently, in the form of the variation of the volu-

metric strain with respect to the axial strain. This curve

shows that before the peak stress is reached the accumulated

inelastic volume increase (i.e., the difference between total

and elastic volume increase) remains relatively small.

The phenomenon of dilatancy in rocks, which finds its "

cause in several mechanisms of fracturation, is controlled by

the mean pressure the initial porosity of the rock. In brittle -

rock the dilatant behavior observed during compression test is

4
.. 4. . *, . .[::

.. . . *
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Figure 1. Results of a hypothetical triaxial test on a
rock sample.
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associated with microcracking and propagation of cracks parallel

to the direction of maximum compressive stress (Brace et al.,

1966; Cook, 1970). In porous sedimentary rocks dilatancy is not . -

only caused by an increase of the crack space (porosity) but

also by sliding along intergranular surfaces (cataclastic flow). .- ..

At high confining pressure, tendency of dilatancy is suppressed ..-

or even reversed (Swanson and Brown, 1972), depending on the

initial porosity of the rock, as the high pressure forces intra-

crystalline flow to occur. For very porous rock, negative dila- --

tancy can even occur at failure, as two processes compete:

(1) dilatancy caused by shearing, (2) volume decrease caused by

collapse of the pore structure.

Dilatation is thus an all pervasive property of hard -

rock, and the stress values at which it starts reflect more

permanent changes occuring in the rock structure. It has

finally to be noted that, although dilatancy is closely associ-

ated with the process of macrofracturation, there is no close

correlation - as it is sometimes speculated - between suppres-

sion of dilatancy and the transition between brittle to ductile

failure (Edmond and Paterson, 1972).

2-2 CRITICAL REVIEW OF LABORATORY EXPERIMENTS.

Unfortunately, only a few of the investigations on the . -

dilatancy of rocks can be used in the understanding of the rock

response around deep underground excavations. Indeed, many

experimental studies of rock dilatation find their motivation in

the analysis of earthquake precursors, and are thus concerned -

with measuring rock dilatancy at very high confining pressures

(e.g., Brace et al., 1966; Edmond and Paterson, 1972; Shock et

al., 1973). In contrast, modeling the response of rock tunnels - "  -"

requires data on rock dilatancy at relatively low confining

pressure (of the orders of tens of bars, as opposed to the

thousands of bars which have been reached in high confining

pressure experiments). Also rocks around excavations experience - "

a stress path which involves increase of the deviatoric stress

accompanying unloading of the mean pressure, while most labora-

tory experiments are characterized by a concomitant increase of

6
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both the confining pressure and the deviatoric stress. Finally,

few data are available beyond peak strength because many experi-

ments were carried out on a "soft" testing machine. (Actually, low

.- not only a knowledge of the rock volume change in the post-

failure stage is required, but also in test conditions where

failure is pervasive throughout the rock sample - the kinematic

constraints during triaxial test experiments allows localized m
failure modes to develop.)

2-3 THEORETICAL MODELS FOR ROCK DILATANCY.

The modern approach for modeling the response of

geomaterials is based on the theories of incremental elasto-

plasticity which involve the existence of a yield function, f,

and a plastic potential, g. The yield function, f, marks the

boundary of the elastic state in the stress space; f is not only

a function of the stress but also of some measure of the plastic

deformation, either the plastic work or the accumulated plastic

shear strain. The response to an increment of stress dT is

elastic if the stress point T is inside the current yield

surface, or if the current stress point is on the yield surface,

and the stress increment is pointing inside the yield surface

(elastic unloading). During continued plastic flow, i.e.,

during a loading history where the stress point remains on the

yield surface, the strain increment de associated with the J .

stress increment dT is compounded of an elastic part ds (related
to do by Hooke's law) and a plastic part de which is propor-

tional to the gradient to the potential surface (flow rule).

The condition of continued plastic flow is expressed mathemat-

ically by

df = 0 (1)

while the flow rule is given by

d = A (2)
- aT

Like the yield function, f, the plastic potential, g, is a

function of the stress and of some measure of past plastic flow.

7
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In this investigation, we are dealing with material

models characterized by Mohr-Coulomb yield and potential func-

tions intended to simulate the response of pressure-sensitive

dilatant rock materials. The Mohr-Coulomb functions are of the

intrinsic curve type; i.e., the plastic deformation is indepen-

dent of the intermediate principal stress T2" For a Mohr-

Coulomb material, the constitutive equations for continuous

plastic flow reduce to

ds - pdP = hdy (3)

ndA p dy (4)

where dP = (dT1 + dr 3 )/2, ds = (dT1 - dr3 )/2, and dA and dy

represent, respectively, the variation of plastic volume change
(dP + d&p ) and plastic distortion (de p - deP), and where h
represents the hardening modulus. Figure 2 gives the geo-

metrical interpretation of the dilatancy parameter = sin 0*

and the friction coefficient p = sine. Note that if the * =

the flow rule is associated (0 represents the highest theoreti- -"

cal value for the dilatancy angle 0*).

In the previous investigations of elastoplastic models

of tunnels (Labreche and Auld, 1980; Reed et al., 1983; AA,

1983) it is assumed that (1) the coefficient of friction is a

constant, (2) the material is nonhardening; i.e., h = 0, and

(3) the dilatancy factor is a constant. These assumptions imply

that both yield and potential functions are fixed in the stress

space, and that only three parameters are needed to describe the

plastic deformation (q, the unconfined compressive strength, the

friction angle 0, and the dilatancy angle €*). However, as

discussed in the introduction, the weakest of these assumptions

is the hypothesis of a constant dilatancy angle, since it

results in unbounded inelastic volume changes. In the present

investigation, the first two assumptions are maintained while

the third assumption is relaxed to a variable condition.

The experimental results reported in the previous

section suggest that the dilatancy parameter is both a function

8
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Figure 2. Geometrical interpretation of the coefficient
of friction p and the dilatancy factor p
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PLASTIC SHEAR STRAIN, y A 6

Figure 3. Variable flow rule, characterized by a maximum
inelastic volume change A*.
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of the accumulated plastic shear strain and the mean pressure.

However, since we are interested in the phenomenon of dilatancy

at relatively low confining pressure, and in the interest of

keeping the model simple, the dependence upon the mean pressure

will here be ignored.

The proposed flow rule is based on an exponential

decay of the dilatancy factor K* (which is defined as minus the
p

ratio of the maximum to the minimum plastic strain rates, i.e.,

K* = "P P).p 1 I 3

K* 1 + (K - 1) exp (Y (5)

P p(

This law is based on some limited experimental evi-

dence which suggests that (1) the rate of dilatation at peak

stress in dense brittle material appears to be consistent with

an associated flow rule (Ladanyi and Don, 1970; Gerionnopoulos

and Brown, 1978), and that (2) the rate of dilatation progres-

sively drops to zero, beyond the peak stress. The parameters y.

in the exponential law (equation 5) can most usefully be related

to the maximum inelastic volume increase A* by integrating the
relation

K* 1
=' l (6)dy K* +1

p

to yield

I.K + 1 i,-
= . n 

(7)

Section 3 which follows outlines the development of an elasto-

plastic model of a deep tunnel which is based on the variable

flow rule (equation 5).

... . -
• . . -~ .
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SECTION 3

ELASTOPLASTIC MODELS OF TUNNELS UNDER

HYDROSTATIC AND NONHYDROSTATIC LOADING

*" 3-1 INTRODUCTION. :, .
In this chapter, the development of two elastoplastic

models of a deep cylindrical tunnel, which implement the

material model described in Section 2 is outlined. Two models

are considered, one for hydrostatic far-field loading, the other

one for nonhydrostatic loading. The nonhydrostatic model is

- restricted to loading conditions for which the problem remains

statically determinate; as is always the case for the hydro-

static loading. This restriction ensures that many features of

, the solution that were derived for a constant dilatancy angle

still apply for the improved dilatation model (e.g., the extent

and shape of the failed region around the tunnel).

The mathematical foundation of the elastoplastic

* models is developed for a hydrostatic case in Appendix A and in

Appendixes B and C for the nonhydrostatic far-field loading. 0
* Appendix B details a formulation for calculating the tunnel

closure for the case of a constant dilatancy angle that is

* developed for solving the general case with variable dilatancy

in Appendix C. The formulation discussed in Appendix B is an

alternative to that derived previously (Detournay, 1983). It

was developed because the original formulation could not be

implemented easily with a material characterized by a variable

dilatancy.

The equations for calculating the closure of the

tunnel are derived for a stress history intended to simulate the

excavation unloading of a prestressed rock mass. As discussed

in the AA report (1983), an elastic correction has to be

applied, to account for a stress history with a far-field stress

surcharge.

i'~~~~~~~~~~~~. ./.'.......£,-.. .. -... •-........ .. .. .. -.,,- -..- o.....•......-......................".;
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3-2 HYDROSTATIC MODEL.

3-2.1 Symmetry Conditions.

In the hydrostatic model, the boundary conditions

consist of an internal pressure p inside the tunnel and a mean

pressure P at infinity (see figure 4). Because of the symmetry

of the boundary conditions and the geometry for this problem, m
the stress, strain, and displacement field in the medium depend

only on the radial coordinate r of the cylindrical coordinate

system which has its origin at the center of the cavity. - .

Provided that 4

2 0O q q
P p+ 1 Kp 1 Kp 1 "

.1- p p "

(it is assumed that P > 2q), the tunnel is surrounded by a

plastic zone of external radius aRo  Since the problem is

statically determinate, the normalized radius Ro of the elasto-

plastic interface is only a function of p, P0 ' and the yield

parameters q and Kp:

1/(K -1)

p +

RO = + (9) .OL"
~Kp+ 1 (K + -p(K p 1 ) -"'j"

Since only the loading processes of interest (either internal

unloading or external loading) cause a monotonic increase of the

radius of the plastic zone, it is advantageous to use R° instead

of either p or P0 as a kinematic parameter. In other words, to

determine the mechanical fields (stress, strain, and displace-

ment) as a dual function of the coordinate r and the history -. .

parameter RO .

The problem being statically determinate, the stress

field in the medium and the displacement field in the elastic

region r > aR0  are actually independent of the flow rule.

(Thei'- expressions can, for example, be found in Newmark, 1970,

or Hendron and Aiyer, 1971.) To calculate the closure of the

tunnel as a function of Ro, determine the displacement field

12
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Figure 4. hydrostatic model.
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u(r, Ro ) in the plastic zone (a < r < aRo). However, as proven
00

in Appendix A, the general form of the displacement field

u(r, Ro) is given by ,

u(r, Ro -(210) ,

i.e., the displacement is only a function of the ratio r/aR10 .W

3-2.2 Concept of the Unit-Plane.

Conceptually, it is advantageous to introduce the unit -"-

plane transformation p = r/aR0  In the unit plane, the circle

of radius p = 1 separates two regions; an interior plastic one

-from an exterior elastic one. As the plastic annulus grows as a

* consequence of changes in the boundary conditions, the image of

- a physical point in the unit plane moves inwards along a radial -

line, crossing the unit circle when the radius of the plastic

" boundary reaches that physical point.

The concept of the unit plane is a powerful one,

because it substantially simplifies the mathematics of the

problem.

*3-2.3 Governing Equations.

The normalized displacement u(p) (p < 1) is calculated

by solving the differential equation

K
pP + K* pu' K* u = -Ap (11)

p p

with

, = (Kp - 1) (K* - 1) + (1 - 2v) (Kp + 1) (K* + 1)

subject to the boundary conditions

u(1) = - 1 ; u'(1) = 1 (12)

The dilatancy factor K* is a function of the maximum plastic
p

shear distortion y which can be expressed in terms of p, u, and

14
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0

_u'(p) 2p (13)

The differential equation can thus be cast in the general form

"" .F(p, u, i') (14)
.- ., ' .

which is well suited for numerical solution, using an algorithm

such as Runge-Kutta. (Such an algorithm is usually included in j

the math library of a scientific calculator, thus making the

solution of equation 14 straightforward.)

The function u(p) depends only on three dimensionless

parameters: Kp, v, and , which is defined as

0 2G (15)
, . 45o

Experimental evidence suggests that the maximum inelastic volume

increase A* is generally less than 5 percent, thus leading to a

possible range of values for A, between 0 and 100.

Once the function u(p) has been determined, the dis-

placement at the tunnel wall, as a function of the history

parameter Ro, is simply given by

_aR 0 S 0

u 0 P- (16)

The variation of the normalized displacement (2G/aS ) u at the

boundary has been plotted in figure 5 as a function of the

normalized radius of the plastic zone for Kp = 3, ua 0.25, and
various values of the parameter ,. To illustrate how the use

of a constant dilatancy angle can be misleading, figure 6 pre-

sents the apparent constant dilatancy factor K* which yields,
p

for any given value of Ro, the same displacement at the boundary

as obtained with the variable flow rule (equation 5). Figure 7

suggests that the solution for A*= 0.1 should approximate

closely the solution for a plastically incompressible material

(K= 1) for values of RO greater than 1.5; while the displace-

ment for A*= 100 should be close to the one predicted by an

15
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Figure 5. Normalized radial displacement of tunnel wall
versus radius of plastic zone, for various
values of A* (K = 3, v =0.25).
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Figure 6. Apparent constant dilatancy factor K* versus radius
of plastic zone, for various valuespof A* (K = 3,

= 0.25).p
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associated flow rule (K* = 3) for Ro less than 2.5. The numeri-
p0

cal analysis indicates that the plastic dilatation on the boun-

dary rapidly reaches its maximum value in the first case

( 0.1 for R, =1.1; =0.1), but that only 45 percent of

the maximum inelastic dilatation has been reached for R = 2.5

in the second case (A* = 100).

3-3 NONHYDROSTATIC MODEL.

3-3.1 Modes of Failure.

In this model the stress at infinity is characterized

by a mean pressure P0 and a stress deviatoric S0 (see figure 7).

In this case, the problem is characterized by two axes of sym-

metry, which are parallel to the principal stress directions at

infinity. Due to the existence of a stress deviatoric S° at

infinity, different modes of failures can develop around the
0 0

tunnel depending on the relative values of P , S , p, and q.

Consider first the case of an unsupported tunnel (p = 0). The

different types of behaviors can graphically be depicted in the

normalized stress space (PO/q, SO/q) (see figure 8):

- Type 1: Elastic behavior only (region desig-

nated I)

* Type 2: Limited failure in a direction perpen-

dicular to the major in-situ stress

(region designated IIa)
* Type 3: Tunnel completely surounded by an

oval-shaped yield zone (region desig-

nated IIb)

_ Type 4: A "butterfly"-shaped plastic region
~~~~~around the tunnel ( region designated . .?-.

III)

Region II in the stress diagram corresponds to statically deter-

minate cases; i.e., conditions for which the extent and shape of

the plastic region are entirely controlled by the stress

boundary conditions and the yield parameters q and K . The
P p

boundary between statically determinate and indeterminate condi-

tions corresponds to a line of critical obliquity m* (recall

18
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that the obliquity is defined as the ratio of S°/S°). The

critical obliquity m* is only a function of the friction angle 4-

(see table 1). Far-field stress points on a line of equal

obliquity correspond to elastoplastic interfaces that are geo- .. ,.

metrically identical, but of different sizes. **-

TABLE 1. Critical obliquity m*.
• . ,.p. - .

* 00 100 200 300 400 "

a•. - .-

m* 0.414 0.437 0.466 0.500 0.542

The existence of an internal support pressure in the

tunnel causes the boundary between regions I and IIa and the

boundary between regions IIa and IIb to move to the left. As -

discussed in AA (1983), the effect of an internal support pres-

sure can be taken into account by a simple geometrical construc- -

tion, which involves moving the far-field stress point along a

line of equal obliquity. Accordingly, the presence of an

internal pressure changes neither the boundary between stati- -

cally determinate and indeterminate conditions, nor does it

change the shape of the elastoplastic interface.

3-3.2 Consequences of Statical Determinacy.

The semianalytical solution developed in this report

is restricted to far-field conditions for which the problem is

statically determinate; i.e., for obliquity less than the criti-

cal obliquity m*. The restriction to statically determinate

conditions ensures that, similarly to the hydrostatic loading,

the location of the elastoplastic boundary is solely controlled
0 0

by the stress boundary conditions P , S , and p, and the yield

parameters q and K. For conditions for which the tunnel is

completely engulfed by a plastic zone, the interface is char-

acterized by a major to minor axis ratio equal to

20
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major axis 0 + m(17)
minor axis 1 - m (17)

with the obliquity m defined as

so (18)
0S

The average radius of the plastic zone corresponds, however, to

the one computed for hydrostatic loading. Also, the stress

field in the medium and the displacement field in the elastic

region are the same as the one computed for a constant dilatancy

angle. To calculate closure of the tunnel, we need to calculate

the displacement in the plastic region as a function of the

boundary conditions, or equivalently as a function of the

average radius of the plastic zone (as for the case of hydro-

static loading). In this case, however, the displacement has

not only a radial component but also a tangential one (except on

the axes of symmetry), and is a function of both cylindrical

coordinates (r,e) and of the kinematic parameter Ro -

3-3.3 Governing equations.

Derivation of the equations governing the displacement

in the plastic region of a material with a variable dilatancy

follows closely the approach adopted for a constant dilatancy

(see Appendixes B and C). The derivation is based on the pro-

perty exhibited by the stress solution that there is no rotation

of the principal stress directions in the plastic zone during

propagation of the failure zones around the tunnel. This pro-

perty of the solution ensures that the principal directions of

the incremental plastic strain tensor dcp remains locked in the

radial and tangential directions everywhere in the plastic zone

and at any time during the monotonic loading. This feature of

the problem allows integration of the flow rule

rd -K* (19)

P. .- ... . . . . . . . . . . . .......

21""" """
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thus yielding the following relation between the radial and

tangential plastic strain components E
p and eP
r

*- (y (20)%' r --p '6

with

Ep p
r e"

, t ' o '

The symbol R* stands for the secant dilatancy factor, which, on

the basis of equation (5), is given by

- 1 + '* Kp + 1
= 1 a a I n - ; (21) :

p 2 + (K -

p

with I

K + 1
n 2

Figure 9 illustrates the geometrical interpretation of the

tangent and secant dilatancy factor (note that for a constant

dilatancy, the distinction between tangent and secant dilatancy

factor disappears).

The governing equations of the displacement in the

plastic region are deduced from equation (20) as follows: the

plastic strain is expressed as the difference between the total

and the elastic strain; the elastic strain field in the plastic

zone is explicitly determined, using Hooke's law and the stress .

solution; and, the total strain can be related to the partial

spatial derivatives of the displacement. These relationships

result in a set of partial differential equations for the dis-

placement that are solved using the elastic displacement on the -'. "

elastoplastic interface as boundary conditions. It turns out,

that as for the hydrostatic case, the general form of the dis-

placement is given by

22
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aRo  So .'-'-'
0

u (r, 8; R0) 2G" r (22) -

o.2 G

The displacement field is thus a unique function of the coordi-

nates of the unit-plane.

All calculations done, the partial differential equa- .- -

tions governing the normalized displacement in the plastic zone -

are given by

ax' + 5y,/ cos 2$ - - y/ sin *. = H1 (p,0)
auir ayi/ai i

X+ 8/cos 2X -') sin 2$ = H2 (p,0)
ay' ax' 2

/ (23)

where

2K, Kp1-i
H1 (p,0) = - p cos 2,

K +1D
+ 2(1-2v) K- cos 2$ + 2m

pp
H2 (p,$) = 2m sin 2$ (24)

with

= (Kp - I)(R - 1) + (1 - 2 v)(Kp + I)(K* + 1) (25)

This nonlinear system of equations is of the hyperbolic type,
and can thus be solved by the method of characteristics. This

system is however very stiff and as a result, poor accuracy is

achieved if standard algorithms of solution are used. Because

of the ill-conditioned nature of equation (23), a special scheme

had to be used. This involved tranforming the equations into a

system of two ordinary differential equations along the char-

acteristics and solving them using a central node finite dif-

ference technique.

24
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3-3.4 Validation and Application.

As a means of validating the numerical algorithm

(program KINVAR) developed to calculate the closure of a tunnel

in the presence of a nonhydrostatic far-field stress, two hydro-

static test cases were run and compared with results obtained by

the code GROUND, which solves the differential equation with the

Runge-Kutta algorithm. The comparison is shown in figures 10

and 11, where the normalized radial displacement at the tunnel
wall is plotted as a function of the radius R of the elasto- . -.

plastic interface. These figures indicate that with relatively

few points, (which is indicative of a relatively coarse

characteristic mesh), KINVAR is able to faithfully predict the

closure of the tunnel.

Two nonhydrostatic cases have also been solved, and

the results shown in figures 12 and 13 (radial displacement on

the two axes of symmetry as a function of Ro). These plots

confirm that the tunnel ovals during closure, with the direction

of maximum closure becoming perpendicular to the maximum com-

pressive far-field stress, once the plastic region around the

tunnel becomes sufficiently large.

25

.......................... ~*'-~*.... -........-...-....



-3.0 - A
-4.0 -

S-5.0-

- -7.0z

-12.0 -GON

5 -13.0o INA

-11. 
0

1 1.2 1.4 1.6 1.8 2.2 2.4 2.68 2.8

RADIUS OF PLASTIC ZONE, R0

Figure 10. validation of KINVAR (m =0, K = 3,
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SECTION 4

.1*
LABORATORY EXPERIMENTS

4-1 MODEL STUDIES.

Over the past 15 years or more the Department of

Defense, through several agencies and contractors, has conducted

a large number of scaled model studies of underground excava-

tions, mostly in rock simulant. The studies have investigated a

number of significant parameters governing the behavior of

hardened excavations, including: alternative ground support

systems, monotonic loading, and static versus dynamic loading.

The tests have undoubtedly contributed significantly to the

understanding of the behavior of underground excavations and the

results of the scaled model tests have been demonstrated to be

qualitatively similar to those observed during testing of full- -.

scale structures in the vicinity of underground weapons tests.

The most extensive series of tests have been performed

by the Stanford Research Institute (SRI), using cylindrical

specimens 4 in. and 12 in. in diameter into which excavations

have been drilled or cast. Emphasis during the earlier tests

was on simulating the behavior of excavations in tuff, and a

number of rock simulants with relatively low friction angles

were used to fabricate lined and unlined tunnels in intact and

jointed rock. Emphasis was also placed on understanding the

impact of static versus dynamic loading. More recently the

interest in siting a deep based missile system in a sedimentary

stratigraphy has resulted in testing of a number of different

types of structures in rock simulants exhibiting higher friction

angles.

As part of the present investigation a detailed review

of the scaled model tests was conducted, with a view to identi-

fying data that may be used to validate the variable dilatancy

model described in the previous sections of this report. " " " "

Despite the large number of tests that have been performed, very

few lend themselves easily to the desired purpose. There are A.

two important reasons for this difficulty. The first is that

.1 28
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the majority of the tests have been performed under conditions

intended to reproduce the uniaxial strain loading that might be

experienced by an excavation as a consequence of a distant

nuclear burst, for example. As will be discussed later, the

selected loading path rapidly leads to conditions that are

statically indeterminate and are, therefore, not amenable to

analysis in closed form. The second problem is that the region

of failed rock around the tunnels is typically relatively large

when compared to the dimensions of the cylinder within which it

is located. Under such circumstances the influence of the

boundary can significantly modify the response. Again, this
effect cannot be accounted for in the analytical model. The

third problem is that most of the support systems tested exert a

nonuniform pressure on the rock simulant unless the model is

subjected to isotropic loading. As currently developed, the

analytical model requires that the support be approximated as a

uniform internal pressure. The approximation may be acceptable

for rock bolted or backpacked structures, but is inappropriate

for integral steel or concrete liners subjected to nonisotropic

loading.

In the following sections the results of a number of

laboratory tests are discussed. Considering the problems

associated with the uniaxial loading conditions, emphasis is

placed on cases in which the loading was isotropic. However,

there is also a discussion of the results of selected tests

under uniaxial strain conditions.

4-2 ISOTROPIC LOADING OF LOW FRICTION SIMULANTS.

A large number of tests have been performed using a

tuff simulant designated RMG-2C2. Typical results from early

tests on lined and unlined tunnels in intact rock subjected to

static and dynamic loads are reproduced in figure 14. These

tests revealed a significant difference between behavior under

static and dynamic loads, and dry and saturated conditions. The '-.

differences were attributed, in the most part, to pore water '.
effects; with the pore water weakening the specimens in the --..

static tests and strengthening them in the dynamic tests.

29
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Following this finding, testing has emphasized static loading of

saturated samples. Under such circumstances the properties of

the RMG-2C2 simulant are reported to be (SRI, 1979):

Young's Modulus E = 1.6*10 psi

Poisson's Ratio = 0.18

Unconfined Compressive Strength q = 3200 psi

Friction Angle = 2.50
For reasons discussed above we shall consider the case of lined

excavations subjected to isotropic loading. Typical results of

such tests conducted with different thicknesses of Al 6061

aluminum liner are reproduced in figure 15. Superimposed on the ___

laboratory data are closure versus applied pressure curves

computed using a model that assumes associated behavior (0 = 0,)

for the simulant and the strain hardening property illustrated

in figure 16. It may be observed that the analytical model

reasonably reproduces the laboratory data. However, as dis-

cussed below, this finding cannot be regarded as evidence of the

validity of the constitutive model assumed for the rock

simulant.

The most important factor affecting the value of this

data is the very low friction angle. In figure 17 the tunnel

closure histories predicted using full dilatation ($* = 0) and

zero dilatation (0* = 0) are illustrated for lined and unlined 4'.

tunnels in the RMG-2C2 simulant. (Models based on these two

extreme assumptions have been referred to as the Hendron and

Newmark models respectively.) If figure 17 is compared to
.-. -. -.

figure 15 it is clear that the differentiation between the full

dilatation and zero dilatation is not an important phenomenon

for such a low friction material.

The second consideration for these tests on low fric-
tion materials is the boundary conditions. For the isotropic

loading conditions considered here this effect can be investi-

gated analytically using the solution for a thick-walled

cylinder subjected to uniform internal and external pressures (p

and Po). The extent of the plastic region in the cylinder is

given by the equation (Kennedy, 1975):
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Figure 15. Tunnel closure versus applied pressure for static
isotropic loading of SRI RMG 2C2 - the curves are
based on a closed-form solution that neglects
out-of-plane plastic strain
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lined (1015 steel liner, a/h = 18) and unlined tunnel.
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( K - 1) Ra
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S__Kp-
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in which a and b are respectively the internal and external

radii of the cylinder and R is the radius of the plastic zone

normalized by a. As noted earlier, the radius of the plastic

zone around a tunnel in an -infinite region is given by:

1/(K -1)

R K =Kp+ 1 (27)
(K+ (K

which is a special case of the thick walled cylinder equation,

that can be deduced by allowing (b/a) to approach infinity.

Equation (26) can be solved to define the minimum thickness

below which the thick-walled cylinder will be completely plas-

tic. This thickness is a function of the internal and external ..
pressures and the material properties: .-

1/(K -1)

(K -)1)1

a (28)
(K 1

- l- - .

m. .I

Referring to equation (27), it can be seen that this

minimum thickness can be much larger than the extent (Ro ) of the

plastic zone around a hole in an infinite region. Specifically:

K Ro (29)
min

Clearly the difference is more important for very low

friction angle materials, such as the RMG-2C2 rock simulant.
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This can be illustrated best by solving equation (26) to obtain

the relationship between the radius of the plastic zone and the

dimensions of the thick-walled cylinder for a particular choice

of material properties. Such a relationship is illustrated in

figure 18. That figure is for the case of a thick-walled cylin-

der of RMG-2C2 without internal pressure and with external .' -

pressure expressed as a multiple of the uniaxial strength. At

relatively high loads the extent of the plastic zone in the

finite region is considerably enlarged, which indicates that the

displacements observed in these models will be much greater than

would be observed in the field. Hence the results of tests of

tunnels in RMG-2C2 simulant are unsatisfactory for validating

the variable dilatancy model on two counts. First, the friction

angle is too small to provide a differentiation between alterna-

tive dilatation models. Second, the results of the model

studies are strongly influenced by the boundary conditions.

4-3 ISOTROPIC LOADING OF HIGH FRICTION SIMULANTS.

A series of tests on lined and unlined tunnels were

performed by SRI on a relatively high friction simulant desig-

nated 6B. Material properties of this simulant are reported

(Lindberg, 1983):

Young's Modulus E = 2.0*10 psi

Poisson's Ratio = 0.25

Unconfined Compressive Strength q = 4300. psi

Friction Angle = 330

Results for four cases of isotropic loading are reproduced in

figure 19 (Lindberg, 1983). Superimposed on the experimental

data are theoretical results obtained using the full (associ-

ated) dilatation model. The theoretical results are for three

different steel liner thicknesses in addition to the unlined . .

case.

It may be observed from figure 19 that there are

significant differences between the experimental data and the

theoretical model. The most obvious is that the effect of the

liner is overestimated in all cases.
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Figure 19. Comparison of Hendron theory (curves) with laboratory
experiments (points) for symmetric loading.
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This is relatively easy to explain for the very thin liner since

it was reported that the thin liners were severely buckled

during loading. For the thicker liners it must be assumed that

their effect is delayed by a certain amount of "consolidation"

and elastic response before the full support pressure is

mobilized, when the liner is fully yielding. *...

A second important departure of the experimental

behavior from the theoretical model is that the theoretical

model appears to overestimate the closure at higher loads.

Unfortunately the uncertainty as to the efficiency of the liners

makes it difficult to quantify this effect. Despite this uncer-

tainty it is instructive to compare these test results with
predictions made using the variable dilatancy model. First,
however, it is appropriate to evaluate the importance of the

boundary conditions, and to ascertain whether these are an

important consideration in this case.

In figure 20 the relationship between the radius of .4.

the plastic region and the radius of a thick-walled cylinder of

6B rock simulation subjected to external pressure is

illustrated. The format of that figure is the same as fig-

ure 18, except that the vertical scale has been enlarged because

the effect of using a higher friction simulant is to restrict

the growth of the plastic region. From the figure it is clear

that once the boundaries lie beyond approximately six tunnel
radii they cease to have a significant influence. Since the

tests performed by SRI satisfy this constraint we conclude that,

for high friction simulants, the tunnel deformation should be

relatively unaffected by the fact that the test specimen is

finite.

Figure 21 illustrates the relationship between tunnel

closure and support pressure for alternative assumptions regard-

ing the maximum inelastic strain. Superimposed on the plots are

the results extracted from figure 19, using the theoretical

level of support offered by the three liners. It is evident

that either the effect of the liners is being overestimated or

that there is an initial displacement that is not accounted for
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in the theoretical model. It is difficult to reconcile either

of these alternatives with the fact that the closures appear to -

be underestimated at low loads. Despite this problem, the

results of this comparison do tend to suggest that the variable

dilatancy model will provide an improved simulation of observed.-: .. "

behavior. There is evidence that the rate of increase of

- closure does decrease at the higher loads. If forced to esti-

mate the maximum inelastic strain using this limited data base

it might be set at approximately 10 percent.

4-4 BIAXIAL LOADING OF HIGH FRICTION SIMULANTS.

Additional data for the response of lined tunnels in

SRI rock simulant 6B is provided by Lindberg (1983), but for the

case of simulated uniaxial loading. In this case the solution

for the closure is not available in closed form because the

problem rapidly becomes statically indeterminate. However, in

an attempt to gain further data on the properties of the 6B, it

was considered appropriate to perform analysis of the uniaxial

loading tests using a finite element code capable of simulating

a Mohr-Coulomb material, providing associated behavior is
assumed.

Results from the uniaxial strain model studies per-

formed by SRI are reproduced in figure 22. Before attempting to

reproduce those results a preliminary calculation was performed

for the case of isotropic loading. The result of that calcula-

"" tion is illustrated in figure 23, where it is used to verify

that the numerical prediction was in good agreement with the

earlier closed-form solution. Having thus confirmed the ade-

quacy of the numerical model, two alternative simulations of the

uniaxial strain condition were investigated. First, uniaxial

strain was imposed by restraining lateral displacement of the

model. To be reasonably consisten't with the laboratory configu-

ration, the lateral boundary was placed 6.5 tunnel radii from

the centerline of the tunnel. Since this boundary is compara- -. " .

tively close to the tunnel, it is probable that the first boun-

dary conditions unrealistically restrains the model. Second, a

confining stress equal to that generated in the free field under
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conditions of uniaxial strain was imposed. This second condi- -

tion is probably too compliant, which suggests that displacement

of the tunnel wall would be overestimated. .,

Results from the two numerical simulations of uniaxial

strain loading are illustrated in figure 23. Two aspects of the

behavior are very interesting. First, the results are extremely

sensitive to the assumed boundary conditions, with larger dis- r. ,

placements resulting from the stress controlled boundary.

Second, the displacements are significantly smaller than

observed in the laboratory, even though the liners were not

incorporated in the numerical simulation. Since the stress

controlled boundary conditions should have resulted in an over-

estimate of the tunnel closure it appears that there must be

some deficiency in the material model. Probably, either the

reported properties are incorrect, or the Mohr-Coulomb model

does not adequately describe the material behavior. These

observations are reinforced by the fact that the numerical model

assumed associated behavior, and therefore predicts the maximum

possible dilatation.

4-5 EFFECT OF TUNNEL REINFORCEMENT.

SRI provided data on a series of tests to evaluate the

effect of rockbolts as a means of tunnel hardening. These tests -. '

were intended to simulate 18 ft diameter tunnels either unsup-

ported or supported with #20 rockbolts on 2 ft centers. This

degree of reinforcement amounts to an internal pressure of

approximately 680 psi (4.7 MPa), if it can be assumed that the "';

bolts exert a pressure equal to the yield stress of the steel.

The tests selected for analysis here were designated by SRI as

LSUX-35 and LSUX-39. The reported properties of the rock simu- - -

lant HF5 used for these two tests are, for material from the mix

used in LSUX-39: r -

Young's Modulus E = 1.4*10 psi

Poisson's Ratio = 0.25

Unconfined Compressive Strength q = 4900 psi

Friction Angle = 400

* . --- , ,
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Since the results of the simulation of the uniaxial

loading tests performed on material 6B indicated a considerable

sensitivity to the boundary conditions, the load path used by

SRI was followed as closely as possible. The record of the

relationship between the vertical and lateral pressures during
the LSUX-39 test is reproduced in figure 24. (This relationship

is generated by slaving the lateral pressure to maintain zero : _

circumferential strain at sample points close to midheight of

the cylinder of rock simulant.) To simplify the numerical

modeling, this load path was idealized as three linear segments

and the internal support pressure was applied incrementally

during the first load segment.

Results of the laboratory tests are reproduced in

figure 25 and those of the numerical simulation in figure 26.

In both cases the predicted displacements are substantially less

than observed in the laboratory. Since any uncertainty in the

loading conditions was removed by carefully following the

laboratory procedure, it is concluded that there are deficien-

cies in the material description. Once again, this may be in

the definition of the properties or in the constitutive model.

The most likely explanations are either that the Mohr-Coulomb
model substantially under-predicts the extent of the plastic

region or that some other failure mechanism, such as near sur-

face spalling, is occurring.

4-6 CONCLUSIONS.

The results of evaluation of the results of laboratory

tests using models based on the closed-form solution and a _

finite element procedure indicate that the Mohr-Coulomb model

substantially under-predicts the closure even when associated
behavior is assumed. This implies that the material description

used is inadequate, either in the choice of material properties

or in the constitutive model. Not enough is known about the

material properties (uniaxial strength, elastic modulus,

Poisson's ratio, and friction angle) to determine whether that

is the source of error. However, it is reasonable to question W__7

whether appropriate account has been taken of scale effects that
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are important in reality but are ignored in the mathematical

descriptions.

Given the uncertainty in the material properties it is

difficult to draw any firm conclusions about the adequacy of the

Mohr-Coulomb model. However, the fact that the models based on -

associated behavior consistently under predict the observed %

• deformation, except in the case of isotropic loading, suggests ...

that the simple constant friction plasticity model is inade-

quate. Additional laboratory testing would be required to -

"* identify the nature of the deficiency, but it seems most likely

that the model underpredicts the extent of the plastic region .

around the tunnel. Careful inspection of cross sections of a -

tunnel structure after testing could be used as a means to test

this hypothesis. Also, consideration could be given to moni- --

toring microseismic emissions during tests to detect regions of .
inelastic behavior.
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SECTION 5

CONCLUSIONS

This study had as its main objective the development

of a mathematical model of a deep tunnel based on an improved

dilatation model of the rock, so as to overcome the principal

shortcoming of existing models based on the assumption of a

constant dilatancy angle.

A review of published laboratory experiments on rock

dilatancy revealed that very few experimental data could be used

to support the development of an improved dilatation model for

rock at low confining pressure. Reasons for this deficiency can
be found in the use of "soft" testing machines, which are

responsible for the lack of data beyond the peak stress, or in .

the fact that many experiments were conducted at very high Awl

confining pressure, so as to simulate the behaviors of rock at - -

great depth. Some l.mited experimental evidence suggest, how-

ever, that at peak strength, the maximum theoretical dilation

rate is achieved (associated flow rule) and that it progres-

sively diminishes afterwards with the plastic shear strain. On

that basis, a very simple dilatation model was implemented which

involved the introduction of a single parameter, the maximum

inelastic volume increase, in contrast to the constant dilatancy

angle parameter used in previous dilatation models. This con-

stitutive model fits between the two extremes: constant dilata-

tion models - the so-called full dilatation model (dilatancy
angle constant and equal to the friction angle) - and the zero

dilatation model (zero dilatancy angle). It has the advantage

of relying on a physically meaningful parameter. • " I.

The improved dilatation model of rock was then used
for the development of two mathematical models of a deep cylin-

drical tunnel, one for hydrostatic, the other one for nonhydro-
static loading. For the hydrostatic loading, it was shown that

closure of the tunnel requires the solution of a nonlinear

ordinary differential equation, and for the nonhydrostatic

loading a system of nonlinear partial differential equations of

51

- .:L [

- '. •, ' . . " - . '.. -. '. ' . % ' , ' 2 - ' . .-- , .•-• . .*..* • .-. . - . •.- . .-. -• ' . . . . • .



-1 -. %.* j

the hyperbolic type. In both cases, the numerical procedures

are discussed in detail: Runge-Kutta for the hydrostatic load-

ing, and the method of characteristics for the nonhydrostatic

case. The numerical models have, however, been devised in such
a way that more elaborate dilatation models - accounting, for

example, for the influence of the mean pressure - can be imple-

mented in a straightforward manner.

Model test experiments were then reviewed in an

attempt to validate the improved dilatation model. The review

proved, however, to be inconclusive because:

1. Many tests have been performed using a very low

friction angle (2.5 deg) rock simulant, which,

because it hardly dilates, can never provide a

clear differentiation between full dilatation and

zero dilatation models.

2. Numerical simulation of tests conducted with a

high-friction rock simulant demonstrates that the '-.-

observed closure is generally underpredicted with

a linear Mohr-Coulomb material even if a full-

dilatation model is assumed. This implies that a

simple linear Mohr-Coulomb criterion is not

sufficient to describe the behavior of rock

during failure.

Although the elastoplastic models developed in the

course of this investigation are based on a relatively simple
constitutive law, they nonetheless represent a significant

improvement over previous analytical models. These models are,

however, best used for parametric analyses and/or to delimit the

conditions for which a more sophisticated (but costly) finite

element analysis is warranted. In that regard, design charts

similar to those developed during a previous investigation
should be devised (AA, 1983). Such charts would enhance the

practical usefulness of the models developed in this study.
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APPENDIX A

ELASTOPLASTIC MODEL OF A DEEP TUNNEL FOR A

ROCK WITH VARIABLE DILATANCY

A-1 INTRODUCTION.

The hydrostatic model of a deep tunnel has been the

subject of so many papers (see Brown et al., 1983, for an

exhaustive list of references), that it might appear unnecessary

to devote yet another to the subject. A review of the existing

models reveals, however, that in most accounts the dilatancy of

the rock - defined as the rate of increase of the inelastic

volume change with the plastic shear strain - is assumed con-

stant. This assumption may be responsible for unrealistic ".

prediction of tunnel closure, since it does not set any bound on

the volume increase that the material can experience. In some

investigations, a variable dilatancy has been implemented, but

calculation of the tunnel closure is then based on an approxi-

mate solution method.

The objective of this paper is to present a rigorous

solution of the tunnel closure, for a general class of materials

characterized by a Mohr-Coulomb yield envelope and a plastic

dilatation, which may be an arbitrary function of the stress and

the plastic shear distortion.

A-2 THE HYDROSTATIC MODEL. . . -

Consider the plane strain model of a cylindrical

tunnel of radius a, driven in a homogene..us and isotropic rock

mass (see figure 27). A far-field stress of magnitude PO acts

at infinity (it is assumed that the gravity force can be

ignored). Excavation unloading of the prestressed rock mass is

simulated by a monotonic decrease of the internal pressure p,

from an initial value P0 to zero. The rock is assumed to behave

as an elastoplastic material with a linear Mohr-Coulomb

envelope:

T3  K T1 - q (30)
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Figure 27. Hydrostatic model.

Figure 28. Unit-plane transformation.
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in which q is the unconfined compressive strength, K the pas-
p

sive coefficient, a function of the friction angle, and tension

and extension are taken as positive. We restrict consideration

to cases where the out-of-plane principal stress is the strict N^

intermediate stress T in regions of plastic deformation, so

that the normal elastic strain, perpendicular to the plane of

deformation, vanishes everywhere. (It can be proven that satis- e-.a

* faction of the inequality (K + 1) > 1/v represents a sufficient

condition to that effect (Detournay, 1985).)

We seek to determine the stress and displacement

fields in terms of the radial coordinate r (the problem is

axisymmetric) and the internal pressure p, for a general class

of materials characterized by a plastic dilatation function of

the stress and the accumulated plastic shear strain.

In the early stage of unloading, the rock around the

tunnel remains elastic; however, provided that

P < h + P _q (31)

the problem is characterized by the existence of a plastic zone
(a < r < aR ) surrounded by an infinite elastic region

0

(aRo < r). Since the problem is statically determinate, the

normalized radius R of the elastoplastic interface is the only N

function of the stress boundary conditions p and P0 and the

yield parameters q and K (e.g., Salencon, 1969):
p

l/(K -1)

F -i----- (K -1)

K + p + q - (32)
p(K-)

L,"

Since R is a monotonic function of p, it can be used as a
0

kinematic parameter instead of p (at least beyond the elastic

limit); in other words any mechanical field (such as stress,

strain, displacement) can be viewed as a dual function of r and

R 0

• .° ,.. .. '...5 9=
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* The stress field in the plane is independent of the
flow rule of the material. In the cylindrical coordinates

system (r,O) the stresses are given by (e.g., Salencon, 1969):

Plastic ~

0 Kl

_ _ _ _ 
+ 1 ( r0

r aR 0l

Tr 0 (33)

Elastic

~~0

-i 0  aR(~-) ra 0

Tr =0 (34)

in which the symbol S0 denotes the limiting value of the stress

*deviatoric at infinity:

S 0 -- IP+i---T (35)
p pf

*within the elastic region the induced displacement field is

* given by:

aS0  -1
U G R0 rr 2! aR0  (36)
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A-3 DISPLACEMENT IN THE PLASTIC REGION.

Within the plastic region (a i r - aRo)• the displace-

ment cannot be described in simple form except for the case of

constant dilatancy angle. Instead, it is necessary to solve

numerically the differential equation that is developed in the

following text.

Since R is used as the kinematic parameter, the rate -
of change of a mechanical quantity is defined as its partial

derivative with respect to The velocity v is thus defined

by:

( 37)
3R0

and the strain rate r' 8 by:

r = 0 R (38)-
0 0

The strain rates are also related to the velocity by:

av ;* v(3)
r ' r (39)

In the plastic region, the strain (and strain rate)

consists of an elastic and a plastic part. The elastic part can .

be expressed in terms of the stress (and stress rate) by means

of Hooke's law. The plastic part of the strain rate tensor is -.

controlled by the flow rule

P= - K* iP (40) -
r p0

...where the tangent dilatancy factor K* can be an arbitrary func-
p

tion of the stress (generally the mean pressure) and the accumu- . . *

lated plastic shear strain, y = &P - P. The flow rule (equa-

tion 40) can then be rewritten in terms of the total and elastic

strain rate:

+,,* *e K*e (41 ..C .. ,
r p r p0
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The elastic strain rates e e in the plastic zone can be

computed from Hooke's law and the partial derivative of Tr and

T., given by equation (33), with respect to Ro . Specifically:
0 (42 -1.O A* Kp-i. " -*"I'.°.'

ie Ze 2
.+ K* (42)°
r e 2G R-

in which

X,= (Kp - 1) (K - 1) + (1 - 2v) (Kp + 1) (K* + 1)

(43)

The differential equation for the velocity field in the plastic

zone can then be deduced from equation (41) using equations (39)

and (42),

0 ;% K -1 ar--
a-- +  -* =  2X a < r a aR (44) :. -
ar p r 2G R aR 0

0 
. .

The velocity field in the plastic zone can thus be calculated

from equation (44) using as boundary condition, the value of

velocity on the elastoplastic interface. This boundary value,

which is obtained by differentiating equation (36) with respect

to Ro, and setting r = aR is equal to

v = - 2 (145)

Once the velocity field has been calculated from equations (44)

and (45), the displacement is obtained by integrating v(r,Ro)

* with respect to R. However, calculation of the displacement

can be dramatically simplified by noting that the displacement

field (like the stress and velocity) is actually only a function

of the dimensionless ratio r/aR0 * For the purpose of demon-

stration it is convenient to introduce the unit plane (p,6)

defined by the affine transformation

r (46)

0
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- In the unit plane, the circle p = 1 separates an internal plas-

tic region from an external elastic region (see figure 28).

Using the transformation (equation 46), the differential equa-

tion for the velocity field becomes:

K -1O p-

p + K, . X* P P_ (47)

in which v stands for the velocity normalized by the character-

istic length L defined as:

0a "

L = 2-G (48)

Equation (47), subject to the boundary condition v = -2 at

p = 1, demonstrates that v is indeed a function of only the

cylindrical coordinate p of the unit plane. Hence, the general

form of the displacement field is necessarily given by:

u(r,R) =R L u(r (49)

The differential equation (47) can now be expressed in terms of

the normalized displacement u, using the fact that

v(p) = u(p) - p u'(p) (50)

thus Kp

+ K* pu' K* u = -Ap (51)

This differential equation is subject to the boundary conditions

ull) - 1 ; u'(1) =1 (52)

which are deduced from the elastic solution (equation 36) for

the displacement.

If the dilatancy factor K* is assumed constant
p

(1 < K* < K ), equation (51) is an Euler equation which can be
p p

solved in closed form to yield

u(p) = - P 1 + (K* + -1)() )"'"
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(Kp - l)(Kp + K) (5)

Realistically, K* should be a function of the accumulated plas- .
tic shear strain, and possibly of the mean pressure. In such

circumstances, equation (51) must be solved numerically; this

involves expressing K* (and thus A*) as an explicit function of
p

the radial coordinate p and the displacement u. Any dependence

of K* on the mean stress can be transformed into a function of p
p

by means of equation (33), since the problem is statically

determinate. The dependence of K* on the plastic shear strain y
involves expressing y in terms of p, u, and u'.

From equation (49) and the strain-displacement

relations:

,0

Cr - 2G -
= - .a'()-(54)

The elastic components of the deviatoric strain in the plastic

region are deduced from Hooke's law and equation (33):

S0  Kp-1
e e £ (55r -2G2p (55) -"-'-"
r 0 2

Hence

0
Y = ¥(56)

2G

in which:

K -1
p

y = '(p) - u - 2p (57)P

It follows from equations (57) and (33) if K* depends -
p

on the stress, that the differential equation (51) can be

rewritten in the general form

u F(p, u, u' (58)
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This equation can be solved readily using a numerical method,

such as the fourth-order Runge-Kutta technique (Henrici, 1962),

which is summarized in Attachment A-1. Applicable solvers are e,

often contained within the math librar- of a scientific pocket

calculator, thus making the solution of equation (58) straight-

forward even with limited computational resources.

A-4 APPLICATION.

As a simple application of the theory developed above,

we investigate a material characterized by a tangent dilatancy --

factor K* that decays from an initial value K according to an
p p

exponential function of the plastic shear strain y: .

K* = 1 + (Kp- 1) exp (-L) (59)
p p Y

The parameter y, can most usefully be related to the

maximum inelastic volume increase A,, by integrating the

relation

K* 1

dy K* + 1 (60)
p

to yield

K + 1
A= y £n P (61)2.-

Equations (59) - (61) indicate that the normalized

displacement field u(p) only depends on three dimensionless

parameters, Kp, v, and A,, which is defined as

= 2 .(62)
S£

Experimental evidence indicates that the maximum inelastic

volume increase is less than 5 percent; thus , should lie in

the range 0-100.

65. %• .. -

. . . . . . . . . . . . . .. -.. . . . . . . . ..-..

6 5 - .-...*...-..*-:.

,- -. %- %-



A-5 CONCLUSIONS.

The preparation of this paper was prompted by the need W__

to improve predictions of tunnel closure. The assumption of a

constant dilatancy angle is believed to be unrealistic because

the dilatation should be a function of the plastic strain (dam- . . """.

age) and the confining stress. Accordingly, a variable dilata-

tion model was sought. Here we have shown that (1) the

differential equation for the tunnel closure can be derived in a

rigorous manner for a plastic dilatation which is an arbitrary

function of the stress and the plastic shear strain and (2) that

by using the unit-plane transformation, the differential equa-

tion can be cast in a form which is well suited for numerical

resolution.

Attachment 1: Solution of a second-order differential .

equation by the fourth-order Runge-Kutta Method.

Consider a second-order differential equation of the

form y" = f (x, y, y'), with initial values of x, yoF yo. The

fourth-order Runge-Kutta method leads to a recursive algorithm

for calculating the values of Yi+l' y'+l at xi+= xi+h, from

the known values of yi, y " at xi:

1~ 7b
Y!+l Y' + 1 (kl + 2k2 + 2k3 + k4 )

i = Y. + h [y + 6 (kl + k2 + k3 )]

where the coefficients k1, k2, k3, and k4 are given by

k = hf(xi, Yi, Y!)

Ih h , h k _ '; ik2 = h f (x i + - Y i +  2 y ' +  8 k l ' Y i I .
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k =hbf X + h, + Y + kl y! +k)

where h is the integration step size.
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APPENDIX B

DISPLACEMENT FIELD IN THE PLASTIC ZONE --..

CONSTANT DILATANCY ANGLE

B-1 INTRODUCTION.

This analysis of the closure of a tunnel in a cohe-

sive, frictional, and dilatant medium, under nonhydrostatic -. -' -'-*

.*. loading, is based on the elastoplastic solution derived by m
Detournay (1983) (see also AA, 1983). In that model, the exca-

vation of the tunnel is simulated by quasi-static unloading of a

hole located in an infinite prestressed plane. The particular . .

load path selected for that analysis was characterized by the .

-. fact that, beyond the elastic limit of the system, unloading of .-

the hole corresponds to a decrease of an internal pressure p. -.>-

Two successive stages could then be differentiated in the

plastic response of the rock system: first, the development of

two isolated plastic zones on either side of the hole, and,

then, the formation of a unique yield region around the hole.

For cases where the hole is completely surrounded by a plastic -

region and for cases where the problem is statically determi- -_

nate, the equation of the interface is given in complex formu-

lation by:

x + iy aRO 6i() (63)

where

)= XoG 1 + p ; =e ee (64)

1(K -
= (- 6; - 6; 1; m2 (65)

(F is the Gaussian
hypergeometric series)

K -1
6 K +1 (66)

p

69

S. . ..



VV77 %-

II-

1/(K -1)r + K 1 .

12 p K iRI K+1 q (67)
R Kp+ 1 p + K 1]

m = the obliquity of the stress at infinity

a = the tunnel radius

The equation (63) for interface was shown to be asymptotically

correct for small departures from hydrostatic loading; nonethe-

* less, it provides a good approximation of the interface, for

cases where the solution is statically determinate.

In the original analysis, the tunnel closure was

calculated by integrating the variation of the incremental

displacement 6u at the tunnel boundary with the loading para-

meter; the incremental displacement 6u at the boundary being

' calculated by solving a system of hyperbolic partial differ-

. ential equations governing 6u in the plastic zone, using as a

. boundary condition the value of 6u on the elastoplastic inter-

face. The implementation of a variable dilatancy angle neces-

sitates, however, that the governing differential equations in 7.
the plastic zone be expressed in terms of displacement instead

- of incremental displacement. As a first step toward implement-

ing the complete mathematical model with variable dilatancy (of

Appendix C), we describe in this appendix, the new model for the

case of a constant dilatancy angle. After giving in Sec-

tion B-2, the explicit expression of the elastic displacement

along the elastoplastic interface, we detail in Section B-3 the

derivation of the equations governing the displacement field u

in the plastic zone and the numerical calculation of u by the

method of characteristics.

B-2 ELASTIC DISPLACEMENT AT THE ELASTOPLASTIC INTERFACE.

The induced stresses 1 in the infinite elastic region

bounded by the elastoplastic interface can be expressed in terms

. of the complex potentials 1) and i( of Muskhelishvili

(1962) and the analytic function G(t) which maps the region ____

exterior to the unit circle in the parametric plane 1 onto the

70
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elastic region in the unit plane z' =z/aR 0  (z is the complex

variable x + iy defined in the physical plane):

T + - 2 [S~ + (68)
xx yy j

-y T l + 2i -t - 2 S i'e 1 1 (69

Where S0is the limiting value of the stress deviatoric S 0 at

*infinity, and a function of the mean pressure

K - 1 [P1

k~ K + 1 K -(0

The induced displacement in the elastic region can

also be expressed in terms of the complex potentials (V and

Yand Cu(C). For this particular elastoplastic problem, it
can be shown that on the interface, the Cartesian components u.

Uy of the elastic displacement are given by (Detournay, 1983):

aR S0
(u iLl0 k

(u +i ' 2G U(71)

where

U = 4(1-v) Cu(a) (V (ca) -(3-4v) x(G)

-K -1
LEI+ -~ k r* p- (a) - CY

oe

R 1 (a) Cofj(t) P(t) d (73) '
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.
(K -1)/24~~ -1 *4

'.4 p

K~ ~ -1 (K1)24

6 = K + (74)
p

For the asymptotic solution of the elastoplastic interface, the

Laurent series expression of the analytic functions R() Y()

4 ) are:

a 2 I F-6;-6+j;j+l;m2)

1 j=l C 3 2 (-6;-6;l;m2

(75)

with

-m~ X~ 2(j-k) \~(k
Xj1 2j-1 EA E(K j6' k

k=O

F (-6;-t5+j-k;j-k+l;m)

(76)

-2 ]-l 9 "2j+h 2 j
2j-1 2j-1 2j-1 2 mmL

with

A K ml ~ (-+k)(J~)k

2kj 2(-

m 2kF(-6;-6+j+k-l;j+k;m2

(78)
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h AK mJ-i m2 (i1 + i+ Kp~ -3 ""2)'.

h2 = K m 2 - K+ .2  ) (6-11)

(79)
K 3

1 K+l " - -'-9-.

m 2j _ mii1 )(80) t. .

Note that for an incompressible frictionless material, """

(6 2[12;'"

the displacement at the interface is given by '--

!i" ~~ ~ 2[a ( m+)<ni 2) m"-]itT"':2- -

aRO  S_2m"-._-'_).

al ~ ~~~(81) "-----

- hI + 1

where .-a](--

R o = exp (82)

2

(80

St = c (c is the cohesion of the material) (83)

B-3 CALCULATION OF THE DISPLACEMENT FIELD IN THE"- "'-
PLASTIC ZONE.

B-3.1 Governing Partial Differential Equations for".-the Displacement. ' -"

B-3.l.1 Integration of the Flow Rule. The monotonic load path ,,-"

responsible for the propagation of the plastic zone around the ... :q[

j..- tunnel ensures that there is no rotation of the -rincipal s~ress'."...,
".; directions in the plastic zone. Once the stresses at one point"-".---° ""

'° reach the yield surface (i.e., the point becomes plastic), from..-). -,
then on, the principal stress directions remain locked along ..,.....,.,

73 i [[:77[,
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the radial and tangential directions. It thus follows that the

principal directions of the incremental plastic strain tensor

6Fp are radial and tangential everywhere in the plastic zone and

at any time during the monotonic loading. This feature of the

problem allows us to integrate the incremental flow rule

6 r K* (84)

To obtain the following relation between the plastic strain

increments in the radial and tangential directions:

F_r = _K* (85)
ep p

The integrated flow rule (equation 85) is actually equivalent to

the following two equations which are expressed in terms of the

Cartesian components of the plastic strain tensor &

+ Y cos 20 - - sin *= 0 (86)

2E Y cos 20 - ( - ) sin 20 = 0 (87)

where

K* -1
sin (0 = (88)K* + 1p

In order to relate to the displacement, equations (86) and (87)

are expressed in terms of the total strain, using the decomposi-

tion of the strain into a plastic and an elastic part:

e p"""-"-
; + (89)

Hence: : ,,

+ cos 20 - (ex - ) sin ," .
x y x y

( e) (e e) sn"'"[
cos 20 - - E , sin

(90)
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2x cos 22 - cos sin 2 e/'" &-n

X x

(91)

The strain components e ey' and Fx can be written as partial

derivatives of the displacement components u and uy. Before

doing so, however, we derive an explicit expression for the

elastic strain in the plastic zone.

B-3.1.2 Expressions for the Elastic Strains in the Plas- -

tic Zone. The elastic strain in the plastic zone can be derived

explicitly as a function of the coordinates, using Hooke's law

and the closed-form expression for the plastic stresses. Under

the constraint

= 0 (92)
z A

which is assumed to hold, the elastic stress-strain relations in

the plane (x,y) can be written as

e= - [(1 - V) AT -ATx 2G x y

e 1
xy 2G xy (93)

Where A T denotes variation of the stress with respect to a

reference state characterized by the uniform stress T
°  Thus

A = +P eO s

=T + PO + So - °- -'-
Aty =ty P 0 + . ...... _

*AT T (94)xy xy

Using equation (94), the plane stress-strain relations (equa-

tion 93) can be rewritten as

75 -
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e e 1-22v

& +T + T +12 K-i

sin 2G~(9)-

K e 1~ % ( .K-

K K y

plan, t e plei stess ed

(s~K K-1

00 0
Where T my is th coisit defne asp

* componentstion and), t Ye inx equaions (90) and (91) eaetno

untse pln they inastead zof thensphysican lae(to). Tu

K +- 1 KUaR +x 'e = (- 0 ay Py= ~(y

S'0) 2(98)
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since

x =aR. x'

y=aR

0

Using equation (98) and the closed-form expressions (equa- .~

tion 97) for the elastic strain, equations (90) and (91) become:

au~
8_U + _Ycos 2 -U, sin P*

ax' 5y') Ox, 3y

H91
2G

_aX+ os - (ax a) sin 20
ay ax, ax, 3

so

=aR. H (p0
2G2

(99)

where

2X* K -1
H1(p$ (K - 1)(K* + 1) p p* ...

p p

cos 20 + 2(1 -2"v) cos 20 + 2m
Kp 1 p+1

H2 (p,o) =2m sin 20 (100)

with

K = (K -1)(K* -1) + (1 -2v)(K + 1)(K* + 1) (101) .

p p p p

The system of partial differential equations (99) and

* ~the expression (equation 71) for the displacement at the elasto- . K
plastic interface (equation 71) represents the boundary condi---

tions for the differential (equation 99) ,indicate that we can '~
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define a normalized displacement (ux , Uy) which is the only .. 'x y
function of the coordinates of the unit plane:

* 0

u = aRO - (102)

The normalized displacement field i in the plastic zone is
controlled by the three material parameters v, KD, K*, and the

p
stress obliquity m. Note that the consistent "normalized"

strain field Z, which is defined as .-

- 1 a au.)4"
i 2 + X(103) -

ij -2 8-xT Ox!

is related to the physical strain field & by

S0
PI .. j . .

2G (104)

We now have to calculate the normalized displacement components

U u in the plastic region of the unit plane, by solving the
x y

following set of partial differential equations:

+ ay' cos 20 - - y' sin i*= Hl(p,$)

I aii ayi (ax aii "
i-" + !x'/ cos 2$ - - ' sin 2$ = H2 (P,)"Fay' ax', ax- ay'i2('O

(105)

with the boundary conditions

Ux =Re [Ue] ; [De] (106)

along the curve F', which is the image of the elastoplastic

interface in the unit plane. As shown in the next section, the

system of equations (105) is hyperbolic; it can therefore be

solved by the method of characteristics.
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B-3.2 Differential Equations along the Characteristics.

B-3.2.1 Normal Form. The partial differential equations

(105), together with the expressions for the differentials du-x
and duy in terms of the partial derivatives i.e.,

x ay'

aui aui
dux = dx' + ay dy' (107)

can be used to calculate the first partial derivatives of Ux and
x

uy at a point (x', y') at which the differentials dux and du
y x y

are known in a given direction dy'/dx'. Rewriting equa-

tions (105) and (107) as a system of four equations in the -*"-

unknown first partial derivatives of ux and uy we obtain:
x y

cos 2o sin * 0 0 cos 2o + sin 0* S ( '0)

-sin 20 cos 20 cos 20 sin 201 H2(P'O)

Q A' X(108) - .: ~~. -,-,:
0dx' 0 dy' du- ;

If the system of equations (108) is hyperbolic, there exist two

real characteristic directions dy'/dx', for which the determi-

nant D of the system (equation 108) vanishes. (Along the

characteristics, the first derivatives of Ux and U cannot bex y
determined from the differential du and duy ) The vanishinc of

x y
the determinant D leads to the quadratic equation

(cos 2$ - sin i*) - 2 sin 2 (qy)-

(cos 2$ + sin i*) = 0

(109)
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This quadratic equation has 2 real roots:

y tan ( e ) (110) __-.dx

where -
-,. J.. ,

4 2 m .
(The upper sign refers to the a-, the lower to the P-character-

istic, see figure 29). The system of equations (105) is there-

fore hyperbolic.

The differential equation along the characteristics

are determined by specifying that one of the determinants D.,
j-

obtained from D, by replacing its jth column by the column of

the right members, is zero (requirement for a consistent solu-

tion). Taking, for example, D3 (corresponding to aUx/y'):

-cos 20 - sin 0* 0 HI(p,0) cos 20 + sin P*-

- sin 2$ cos 20 H2 (p,o) sin 20
D =

dx' 0 du 0

0 dx' du dy'
y

(112)

or

D =HI(p o) dx' (sin 20 dx- cos 20 dy)
3 1~,$

. (P,) dx ' 2 (cos 20 + sin **)

+ du x [-2 dx' sin 2$ cos 2$
x

+ dy' cos 20 (cos 2$ - sin 0*)]

+ dx' dii cos 2$ (cos 20 + sin 4*) (113) :'-
y

Imposing the vanishing of D in the characteristics direction,

yields for the a-characteristics:
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Figure 29. *Displacement characteristics. 
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Figure 30. Method of characteristics.
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Figure 31. Contravariant components of displacement.
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HI (p ,0)
du+ tan (0-)du =dx' 2 2

x 2 cos (0 - &) cos 2'2

tan (0 -- e)+ dx' H tan - (114)
H2(p cos 20

for the P-characteristics:

dux + tan( + )duy = dx' .-...- "
2 cos2 (0 + e) cos 20

dx' tan (0 +
H2 0,0) cos 20

(115)

The system of equations (114) and (115) represents the normal

form of the system of partial differential equations (105); it

gives the directional differential of Ux and uy along the char-x y
acteristics.

B-3.2.2 An Explicit Finite Difference Scheme. The normal form

of the governing equations of the displacement field in the

plastic zone lends itself naturally to an explicit finite dif-

ference scheme. If equations (114) and (115) are rewritten as .

R. du x + S. di = T. dx' ; i = 1, 2 (116) .. <-

The finite difference discretization of equation (116) is then

simply given by (see figure 30)

--3 -i -3 -a
Ri (u x xi + S. (u - u) .. . --. X)  1 y y)

(117)
-Ti (x'- x'); , 2

3-3. -

The displacement (u , u ) at point 3 - whose coordinates (x,x yy') are computed by calculating the intersection point of the

tangent to the characteristics at points 1 and 2 - is thus

calculated by solving the linear systems of equations
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[R 5J T~ l(x'-x') + R2 i + S2  18
= 1~~118) -'--

where the coefficients Ri, Si, Ti are evaluated at (xi , yi).

Numerical tests, using an algorithm based on this

scheme (Algorithm 392 of CACM) revealed poor accuracy of the

solution (the test case was the hydrostatic problem), unless a

high density characteristic mesh was used. The problem of

accuracy was caused by (1) the curvature of the characteristics,

which leads to an error in the evaluation of the intersection

point of the two characteristics, and (2) the stiff nature of
the differential equation. Because of this problem of accuracy,

another scheme was implemented, that was based on expressing the

components of the displacements in the curvilinear coordinate

system of the characteristics.

B-3.2.3 The Characteristics Coordinates (a, 0). The displace-

ment characteristics are logarithmetic spirals, having the

origin of the plane as an asymptotic point. The equation of the

two characteristics intersecting at the point (p o are given

by

±10 0 -0 
) tan (n/4-1.*/2) (119)

p p 0 e (119) --...-

(upper sign u -characteristics, lower sign u-characteristics).

It follows from equation (119), that the u- and

P-characteristics can be identified as the coordinate-lines of a

curvilinear coodinates system (cu,O). (Constant 0 and a coordi-

nates, respectively) defined as:

ci = - , K'n p +

1= = - 4 n p - (120)

The characteristic coordinates (u, p) have been defined in such

a way that the base vectors e and e, are pointing towards the .-.'.

asymptotic point (see figure 29). The contravariant components

83



.A 
~ 

A A L

ai and ii in the characteristic coordinate system (a, ~)are
given by (see figure 31).

= - cos 1 E - ) U - sin - y)

u =-cos(€+ ) - sin (+ E) u (121)
x y

B-3.2.4 Ordinary Differential Equations Along the Character-
istics. The governing differential equations of the displacement

field in the plastic zone can now be rewritten in terms of the

contravariant components of the displacement. Inverting equa-

tion (121),

Cos 4* Ux = - sin 1€ + C) u + sin (u - )

Cos * = Cos ( + u) U - COS (d - u) (122)

and differentiating the above equations, we obtain

Cos= - sin (4 + ,) du - cos (o + .) u do

+ sin (o~~ diu + Cos E) -su do

cos *) d - sin(+) u _. d.

. + cos(o -e) du + sin (o -E) do(2

|(123)

Substituting du and dC as given by equation (123) in the

differential equations (114) and (115), and expressing dx' as a
7. function of do leads to:

- . dui -"d(u tan ** + u sec F*)d4 = 2od"-r or 2-sin & cos 20

[Hl(P, ¢ ) + 2 sin (o - &) cos (o - s) H2 (p,01 W

(124)
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+ tan * + u sec 0*) d=

[HI + 2 sin (+ ) cos + ) H

(125)

Since

dx's= & - pdo along a-characteristics

dx' = csn + n pdo along P-characteristics

and noting from equation (120) that

do =d along P = constant

d= - along a = constant

the differential equations (124) and (125) can finally be

rewritten as

du
2 ( tan 0* + u sec 0*) t (126)

da a Pu ab-

2d- - (us tan ** + u sec 0*) = t (127)

where, after simplification, t and t are given by

(Kp-i)(Kp+l) K-

K +1
+ (l-2v) K 1 m cos 2 ((p-&)

Kp-i . . .

(128) " "

X, K -1 K +1
tR sin p , p p  + (l-2v)

p pp

- m cos 2 (O+).

(129) "
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The cylindrical coordinates (p,) in the above equations can.

simply be expressed in terms of a and by " - ': ' :-. '

2 ;(130) € -

B-3.3 Numerical Calculation of the Displacement i2...
Field in the Plastic Zone. - ".--

The numerical determination of the displacement field

in the plastic zone is carried out by the method of characteris- j.i'?'
tics (Masseau, 1899), which is based on the discretization of [i-.[[,
the differential equations (126) and (127). aboe euatonsca

Consider the point P, inside the plastic zone (see-.....

figure 30). The displacement at P is controlled by the values ,.- "
of the elastic displacement along the arc AB of r which is

intercepted by the two characteristics intersecting at P. (In

other words, the domain of determinacy of the arc AB is the
curvilinear triangle ABP bour ed by the two characteristics a-

and In the method of characteristics the displacement at P

is approximately solved by first ide t plaes along the
nonchardcteristic arc AB, then progressively computing thevaluedisplacement at allacendalo the characteristic mesh

(located at the intersection of the characteristics emerging
from the initial nodes), using a discretized form of the dif-

ferential equations (126) and (127). -
In the following, we derive the equations needed to .

calculate the displacement at any node (P assuming the

displacements known at the two "parent" nodes (nod and (the

0 2)" (a'3 = a 2; 03 = Pl1 .)  q
A class of numerical algorithms to calculate the

displacement at th the node(a is based on the so-called

t-method. The t-method relies on two assumptions: '.,
1. The contravariant components (uu8 vary :

linearly with the characteristic mordinate

between two adjacent nodes located on the same

charac teri s tics.

nlde needed-to



2. The differential equations (126) or (127) hold at
a certain point "" of the characteristic arc

defined by two adjacent nodes.

For example, consider the point "c" of coordinates (a, 1

located on the characteristic arc defined by the two end nodes

(a ,* pi
) and (a2 , i ) .  The value of , which must be in the

range (0,1) is given by

a2 - 1 i"(132)

The displacement at point is given by

1 = (1 - ,) ua + t u3a a a

u (11 + Z3 (133)

On the basis of equation (133), the differential

equation 126, which is assumed to hold at point "c", becomes:

2 u- - (o2.- 1Ittan 0* ju3 + (1-) u-

sec ** [ 3up + (i-c) u(

( 134 ) '".'-'

where E is used to denote the value of t at point "c". The

discretization of equation 127 can be carried out in a simi-

lar way:

2 [ - U - ( " 2 tan 0* + 11- )

+ sec a* jU3 + (l- )a 2] + E 0

(135)

The above two equations can be written in matricial form as:

D D u P (136)
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where

D =2/act- tan 0*act

D =- sec 0* - '

DO (D + tase 0*) D +sc4*

P (D~ + tan 0*) U1 + (D + sec 0*) 1 + t

with

"2 1

* A class of algorithms can thus be generated depending on the

value of ~, from full explicit (~=0) to fully implicit

=1). Some parametric investigations confirmed that the

* central -di fference method (~=0.5) provides the most accurate

scheme.

For the central-difference method, the components (a3

z3*u)of the displacement at node k are given explicitly by

-- = + (1 tan 0* 4 -2+ sec '0* A

43 - a D4 D

Z3 - + I tan 0* I + sec 4 k D a (137).VIN -,p \4, D 04

where

Da= il + i2)+tn* J(l -1 a2) +E

D + (1n 0* ta *1-an 0*4 4f4 o f

42 2

16 (sec 0* -tan 0*)
16.
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APPENDIX C 'td % ."

DISPLACEMENT FIELD IN THE PLASTIC ZONE-VARIABLE DILATANCY

C-i INTRODUCTION.

In this appendix, we develop the theoretical basis of ., i*.

a numerical algorithm to calculate closure of a circular tunnel

subject to a nonhydrostatic far-field stress, for a class of

materials characterized by a variable dilatancy. The following
analysis closely parallels the one outlined in Appendix B, for a

material with a constant dilatancy.

C-2 VARIABLE DILATANCY FACTOR.
The dilatancy factor K*, which is defined as

p

de P
K* (138)

3

is assumed to decay exponentially with the accumulated plastic

shear strain y, from an initial value K
p

K: 1 + (K - 1) e " /Y* (139)
pp

The flow rule (equation 139) is associated at the

elastic limit (K* = K if y 0); but as the material is yield-
p p

ing, the rate of increase of the inelastic dilatation a with y

progressively decreases so as to eventually vanish, when the

,maximum dilatation A* is reached. The parameter -,y in equa-

tion (139) can be related to A* by integrating

dy K* + 1 (140)

to yield

= 2 (141)
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C-3 GOVERNING EQUATIONS.

C-3.1 Partial Differential Equations.

As for a constant dilatancy angle, the flow rule

(equation 138) can be integrated, since there is no rotation of

the principal direction of the incremental plastic strain tensor -.

-P during loading; i.e.,

r K* (142)

where K* is defined as the secant dilatancy factor. From K', we
p p

can also define a "secant" dilatancy angle ,..

(. a-c sinK (143)
Kp ,

Derivation of the differential equations governing the

displacement field in the plastic zone follows step-by-step the

approach detailed in Appendix B, except that all the constants

depending upon the dilatancy angle 0, must now be understood as

functions of the (variable) secant dilatancy angle *,. In

particular, the concept of the unit-plane still holds; in the

unit-plane, the governing equation of the normalized plastic

displacements a, which is defined as

aS.
u=- Ro  (144)

are given by

+ (y u,. cos 20, sin H 1

%y' cos 2 x sin 20 = H2 (p,o)

(145)
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where *~

H1 Ops) -K p - cos 20
-Kp 1) (R~ + i) F

+. -1*

H2  p~ 2m sin 20(16

with -

(Kp - )(R* 1 + (1I 2v)(]Kp + 1)(R + 1)

(147)

Despite their similarity, an important difference exists between

the two sets of equations (99) and (145). In the case of a '

constant dilatancy, the normalized displacement field a in the
plastic domain of the unit-plane, depends on the material para-
meters K , K*, v, and the stress obliquity m; hence the same

p p
normalized displacement field holds for any shear elastic modu-

* lus and/or any stress at infinity characterized by the same
obliquity m. In the case of a variable dilatancy angle, how-

ever, the governing equations for iidepend on the ratio y/tl* (by
virtue of the law of variation of K*) besides the parameters K 1p
V, Mn. Since

0Si
= y (148)

where

ap p Pa

the coefficients of the system of equation (145) are actually _4W
functions of the ratio y/A*1 where A* is given by

2G A(150) 
*
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Consequently, the normalized plastic displacement field u

depends now on the dimensionless parameters m, Kp, v, and A,.

I (The same conclusions would hold for other forms of variation of

K*.) Hence, some of the properties of the solution for a con-
p
stant dilatancy angle (e.g., independence of _u on So, G) do not

hold anymore.

C-3.2 Differential Equations along the Characteristics.

Derivation of the differential equations along the

characteristics is identical to the procedure detailed in Sec-

tion B-3 of Appendix B, but for the substitution of *, by @,.

The normal form of the differential equations is

HI(PO)
dui + tan(0 E) dii =dx2x +dy = 2 cos - c) cos 2"

+ dx H (P,) tan (0 -
2 cos 2.

along the a-characteristics

(151)

du + tan (+ e) d =i dx '1 I.- 0)
~x 2 cos2(0 + E) cos 20 ,. -. [

2 dx tan ( + )

2  cos 20

along the p-characteristics

and the characteristic directions are given by

d tan (0 + (152)

(upper sign for a-, lower sign for u-characteristics). In

equations (151) and (152), the symbol Z denotes the inclination
of the characteristics on the radial direction:

T (153)
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Since the inclination i is a function of the solution

(i.e., the displacement uZ), it is not anymore possible to define

explicitly the characteristic coordinates (a,o). However, the

formal form of the differential equations (126) and (127) still or ,.;<F, 
-

holds; i.e.,

2 L 6" (i tan *. + u sec ,) = ta (154a)

2 - (Ui tan + u sec = t (154b)d" .

Provided that do and do are defined by

Indeed, the relationship between the increments dp and do -

characterizing the variation of the cylindrical coordinates

between 2 points infinitesimally close on the same characteris-

tics (see figure 32) - is given by do = 0 for the 0-characteris-

tic, and by do = 0 for the a-characteristic. Note that in

equations (154) the curvilinear components u and u are given
in terms of U~ Uy', by equation (121), with e replaced by , and

the values of ta and t are obtained from equations (128) and

(129) respectively with e, K*, A* replaced by E, R, ,.,

C-4 NUMERICAL SOLUTION OF THE DISPLACEMENT FIELD.

C-4.1 Preamble.

The system of differential equations (154) will be

solved by the method of characteristics. A sequence of N nodes

is selected along the elastoplastic interface, that defines a

fan of characteristics in the plastic domain. The displacement

at the initial nodes on r are calculated from the solution of

the displacement field in the elastic domain, while the dis- r i ':

placement at the nodes of the characteristic mesh is progres-

sively computed by moving away from r, using the discretized

form of the differential equations. These discretized equations

will be derived for a class of methods (the t-method), which
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Figure 32. Geometrical relation between p, dp, and do
for two points infintesimally close on the- .-

same characteristic.
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Figure 33. Calculation of displacement by the method
of characteristics.
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Figure 34. Calculation of average extension between .'

A and B.
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provides a full spectrum between fully explicit to fully ..

implicit.

Several complications arise in the calculation of the

plastic displacement field, that are introduced by the variable

character of the material dilatancy. First, the position of the

nodes of the characteristic mesh cannot, as previously, be

calculated prior to the displacement of these nodes. Instead,

. they are an integral part of the solution and must be calculated

concurrently to the displacement at the nodes. Second, the

differential equations are nonlinear, and so are their dis-

cretized form (except for the fully explicit case). As a con-

sequence, the calculation of the displacement at a new node, and

the position of this node requires an iterative computational

procedure. The following sections detail the basis of a numeri- --

cal algorithm to calculate the displacement field in the plastic

zone.

C-4.2 Discretized Equations.

Consider two close points 1 and 2 of the plastic zone,

at which the displacement is known (see figure 33). Let pi,

denote the cylindrical coordinates of point i (i = 1,2) and u -
U.

the cylindrical components of the known displacement at those

points. For the sake of definiteness, it is assumed that

02 > 01" We need to calculate the coordinates (p3 ' $3) of

point 3, the intersection of the a-characteristic through

point 1 and the -characteristic through point 2, and the dis-
-3 -3

placement (u , u 0) at that point. --

First introduce the characteristic "coordinates" a, _

which are only valid on the two arc segments 13 and 23

on 13:

a' = - on p 0

" i' -n p -0 (156)

.. . ......................

1k!
. .".,9.5-, .-," " ,,g
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on 23:
"' ~all = - £ n p + . .- "--'

off = I- In p - (157)

where (K*) and (R)I represent an "average" value of the secant

dilatancy factor along segments 13 and 23, respectively

(actually the value of R* at point "c").
p

The characteristic "coordinates" (aj Pj) of point 1

are given by equation (156), with p and * substituted by p1 and

*1. Similarly, the "coordinates" (a2" 2 ) of point 2 are
- obtained from equation 157.

The segment of characteristic 13 is characterized by

P' = "(158)

and 12 by

of = a" (159)2

As for the case of a constant dilatancy angle, we can define the
curvilinear components u and u of the displacement, which are"..

related to the cylindrical components u u by

U 1

1 P (160)
P~ ~ 1 fR*l +7

where K* is either (K*) or (K*), depending on whether thep p af pp
point is on the 13 or 23 arc segments.

The numerical procedure to calculate p3  03 u u~

*relies on the following assumptions:

1. The curvilinear components u and u vary

linearly with u' on the arc 13, and with on

the arc 23.
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2. The differential equation (154a)applies at point

S(0 S t ;5 1) of segment 13, with coordinates
"-a-

(taj + (1 - E) a", 0' and equation (154b) at

the coordinates (a", + (1 -,) j)on the '

arc 23.
3. At point 3, a3  a3  a "and P", which

is only correct if (~) and (R*)~ correspond to

the value of the secant dilatancy factor at
33point 3, and if ua (and u) is equal in both

characteristic systems (&', ') and (a, off)

4. The "average" secant dilatancy factor (R) is
-p pa

equal to the value of K~p at point 'It" on seg-
ment 13; similarly (R) is the value of R* at

p p
point " on segment 23.

It follows from the assumptions that the discretized form of the

* two differential equations (154) are

- tan i 3
- sec F a3

+ (1- ) tan +)ii (1 ~)sec +* -jl

- sec ~ ua taa

(+ (1-~ tan ~ ~ 1-~ sec t

(161)

where

Eand t t and t calculated at point " on seg-
P ments 13pand 2,respectively

4* and $*=the secant dilatancy angle at point " on
af segments 13 and 23, respectivelym

22
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the discretized equations (163) can be rewritten in matricial

form:
-3 .Da Da .u', ,

= II ri (162)
D D u P

with

Daa = 2/Aa - tan 0*

D = - sec

D = - sec0*

D = 2/AP - { tan (*

Po =(D + tan *) 1 +(D + sec@*)u +-or or a ar ora

P =D tan a2 + (D + sec a2

The components a and u of the displacement at point 3 are then

given by

D -P D

D

a D D (163)

with

D D D -D D

Finally, the cylindrical components (Up, u) of the displacement

at point 3 read

-3 1 r)(a a7Tii 3 )
+- + +1

:Ti ( * .. ,.1.
1 3 + (164)4~

e p".- .5.,
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while the position of point 3 is given by

U2 + P1""","-

p3=exp
ii.p -- J.a *

)a 2 + 1 (165)
3 +

C-4.3 Iterative Procedure.

The quantities (Kp)a and (K ), and the related con- t .-

stants which appear in the systems of equations (162), are not

known beforehand since they are functions of the plastic shear

distortion j at point "c". An exception, however, is the fully

explicit case for which point "t" on segments 13 and 23 cor-

responds to the known points 1 and 2, respectively. Thus, but

for the case = 0, the system of equations 162 is nonlinear

and has to be solved iteratively. The iterative procedure

consists of taking as a first approximation of (Kp) and (Kp)

the values of Kp at 1 and 2, solving the systems of equa-

tions 162, calculating the positions and displacements of. .

points "" to determine new approximations for (Kp)a and (K)p ap 3
and iterating until satisfactory convergence is achieved. 7,1

C-4.4 Calculation of the Plastic Distortion y.

The plastic distortion y can be calculated from the

flow rule

= sin I* (166)

.. and the knowledge of the plastic normal strain &P in a non-

characteristic direction. Indeed, assume that -P is known in a .-..-.

direction which is inclined by an angle ri on the x-axis; thus

Z p =ip+zp)+ 1 cos 2 (n - 0) - - (167)
2. ... P .

Using equations (166) and (167), we obtain for .
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2 P (168)

sin * + cos2(q-$)
If n defines a characteristic direction, cos 2-) = - sin **

and j is undefined from equation (168) (-P vanishes in the

characteristic direction). ,-

Let us now calculate the approximate normal strain

"V between two adjacent points A and B at which the displacement is '
-"" known (see figure 34). The angle n, which gives the inclination

"- of the segment AB on the x-axis, and the distance AL between A

and B are given by -

.= arc tan XB -A
xB A

2 2[ ( 169 )

AL =4(XE xA + - (19

Let uA denote the displacement at point A in the r-direction
A

and u the displacement at B, also in the o-direction. uA and

BUAB are related to the cylindrical components of the displace- -. b'.-;

ment at A and B by

U = cos (r-o) up + sin 1 u-) u( (170)

The average extension F between A and B is thus given by
B A. . . °.L

B AB
B A~ -u'-.-.'''

= AL (171)AL -- "." -

The average strain , represents an approximation of the normal _._

strain in the o-direction at both points A and B.

The elastic past e of the normal strain in the direc-

tion n is given in terms of the Cartesian components of the

elastic strain tensor by -

'e ~e + ~e + _ ~ e cos 2a + xy sin 2a

(172) ..
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since

K + 1 K~

(Z e + Z e 1  ( 2 v ) -P -- - Ii -

X yJ K-i

K -1

(e _Ze) P p cos 20-rm

Z =P sin 2 (173)
*1

* the expression for ebecomes

Kp

K -l
+ cos 2(n~ - )pp m cos 2n 4

The plastic part ZP is then determined by the differences-

1011
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